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ABSTRACT
We addressed when plate-tectonic processes first started on Earth by examining the ca. 

2.0 Ga Limpopo orogenic belt in southern Africa. We show through palinspastic reconstruc-
tion that the Limpopo orogen originated from >600 km of west-directed thrusting, and the 
thrust sheet was subsequently folded by north-south compression. The common 2.7–2.6 Ga 
felsic plutons in the Limpopo thrust sheet and the absence of an arc immediately predating 
the 2.0 Ga Limpopo thrusting require the Limpopo belt to be an intracontinental structure. 
The similar duration (∼40 m.y.), slip magnitude (>600 km), slip rate (>15 mm/yr), tectonic 
setting (intracontinental), and widespread anatexis to those of the Himalayan orogen lead us 
to propose the Limpopo belt to have developed by continent-continent collision. Specifically, 
the combined Zimbabwe-Kaapvaal craton (ZKC, named in this study) in the west (present 
coordinates) was subducting eastward below an outboard craton (OC), which carried an arc 
equivalent to the Gangdese batholith in southern Tibet prior to the India-Asia collision. The 
ZKC-OC collision at ca. 2.0 Ga triggered a westward jump in the plate convergence bound-
ary, from the initial suture zone to the Limpopo thrust within the ZKC. Subsequent thrust-
ing accommodated >600 km of plate convergence, possibly driven by ridge push from the 
west side of the ZKC. As intracontinental plate convergence is a key modern plate-tectonic 
process, the development of the Limpopo belt implies that the operation of plate tectonics, 
at least at a local scale, was ongoing by ca. 2.0 Ga on Earth.

INTRODUCTION
The time of onset for plate tectonics on Earth 

has been hotly debated, with estimates ranging 
from >4.0 Ga to ca. 0.85 Ga (e.g., Korenaga, 
2013; Cawood et al., 2018). The most commonly 
used proxies of plate-tectonic processes are rock 
records of subduction-zone–like low geother-
mal gradients (e.g., Hopkins et al., 2008) and 
modern-arc geochemical signatures (e.g., Martin 
et al., 2014). Since non-plate-tectonic models 
(e.g., Bédard, 2006; Moore and Webb, 2013) 
could also explain these proxies, determining 
the onset of plate tectonics on Earth requires 
direct field-based geological evidence of large-
scale (more than hundreds of kilometers) hori-
zontal crustal motion. In order to address this 

issue, we reexamined the tectonic development 
of the >600-km-long Limpopo orogenic belt in 
southern Africa (Fig. 1). Our result shows that 
modern plate tectonics, expressed as intracon-
tinental plate convergence, occurred on Earth 
by ca. 2.0 Ga.

GEOLOGICAL SETTING
The Limpopo belt consists mostly of supra-

crustal assemblages intruded by ca. 3.2 Ga and 
2.7–2.6 Ga felsic plutons (e.g., Kröner et al., 
2018). These protoliths were penetratively mod-
ified by orogen-scale ductile folding, granulite-
facies metamorphism, and anatexis first at 2.7–
2.6 Ga and later at 2.02 ± 0.02 Ga (Kramers and 
Mouri, 2011; Brandt et al., 2018). The Limpopo 
belt of Mason (1973) (also known as the central 
zone of the Limpopo metamorphic complex) is 
bounded by the 5–10-km-wide, right-slip Tuli-
Sabi and left-slip Palala mylonitic shear zones 

in the north and south against the northern and 
southern marginal zones, respectively (Fig. 2). 
The marginal zones are composed of granu-
lite- to amphibolite-facies granitic-greenstone 
associations with the metamorphic grades de-
creasing away from the Limpopo belt (Mason, 
1973; van Reenen et  al., 2019). Granulite-
amphibolite–facies metamorphism occurred 
at 2.7–2.6 Ga and 2.0 Ga, respectively, in the 
northern marginal zone, whereas similar high-
grade metamorphism appears to have occurred 
only at 2.7–2.6 Ga in the southern marginal 
zone (Kramers and Mouri, 2011; van Reenen 
et al., 2019). Both zones have yielded ca. 2.0 Ga 
Rb-Sr biotite and feldspar cooling ages, which 
are in contrast to the 2.7–2.6 Ga Rb-Sr biotite 
ages obtained from Zimbabwe-Kaapvaal craton 
(ZKC) rocks outside the marginal zones farther 
away from the Limpopo belt (van Breemen and 
Dodson, 1972).

The origin of the Limpopo belt has been at-
tributed to 2.7–2.6 Ga north-south Zimbabwe-
Kaapvaal collision (Light, 1982), protracted 
north-south terrane accretion from 2.7 Ga to 
2.0 Ga (Barton et al., 2006), two-stage, glacier-
like, gravity-driven ductile flow from east to 
west at 2.7–2.6 Ga and 2.0–1.8 Ga (McCourt 
and Vearncombe, 1987; van Reenen et al., 2019), 
and ca. 2.0 Ga intracontinental transpression 
(Schaller et al., 1999). A key piece of evidence 
for the 2.7–2.6 Ga Limpopo orogenic event is 
the presence of seemingly undeformed 2.7–2.6 
Ga plutons (van Reenen et al., 2019), but such an 
interpretation does not consider the possible role 
of rheological contrasts among different litholo-
gies in the Limpopo belt in controlling the style 
and distribution of deformation. A major issue 
with the existing models is that they all assume 
the orogen-bounding shear zones to have main-
tained their original geometry. As shown here, 
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this assertion is inconsistent with the regional 
geologic relationships, which require the orogen 
to have been tightly folded by later compression.

POSTOROGENIC FOLDING OF THE 
LIMPOPO OROGENIC BELT

Four lines of evidence suggest that the Lim-
popo orogen was folded by north-south com-
pression at ca. 1.97–1.88 Ga (Fig. 1). First, the 
1.97–1.88 Ga Blouberg Formation, unconform-
ably resting on top of the Limpopo belt, was 
folded and then overlain by undeformed ca. 
1.88 Ga upper Waterberg Group strata (Figs. 3A 
and 3B). Rotation of the dominantly verti-
cal  Blouberg beds to their original horizontal 
 positions requires the nearby vertical “left-slip” 
Palala shear zone to have a prefolding subho-
rizontal geometry with top-to-the-west thrust 

kinematics. The folding event postdates the 
youngest cooling age of the Palala shear zone 
at ca. 1.97 Ma (Schaller et al., 1999) and the 
youngest detrital zircon age of the Blouberg For-
mation at ca. 2.04 Ga (Corcoran et al., 2013) but 
predates a mafic dike intruding the undeformed 
overlying Waterberg Group strata at ca. 1.88 Ga 
(Fig. 3A; Hanson et al., 2004).

Second, the lower Waterberg Group, located 
directly south of the Palala shear zone (unit Ptw 
in Fig. 2), was also folded by north-south com-
pression between ca. 2.02 Ga and ca. 1.93 Ga 
(Dorland et al., 2006). This timing is similar 
to the aforementioned Blouberg folding event 
(Fig. 3A).

Third, the Limpopo gneissic foliation de-
fines an orogen-scale fold structure (e.g., Mc-
Court and Vearncombe, 1987; see also Fig. 2), 

expressed by the gneissic foliation oriented at 
high angles to the orogen-bounding shear zones 
along the central section of the Limpopo belt, 
which becomes subparallel to the shear zones 
approaching the edges of the belt (Fig. 2). Ro-
tation of the nearly vertical gneissic foliation 
near the orogen margins to a horizontal posi-
tion would require the nearby bounding shear 
zones to have had a subhorizontal geometry be-
fore orogen-scale folding. This reconstruction is 
consistent with restoring the folded Blouberg 
and lower Waterberg strata mentioned above, 
which places the currently vertical Palala shear 
zone into a prefolding subhorizontal orientation.

Fourth, gravity and seismic-reflection sur-
veys show that the low-density Limpopo belt 
lies above the high-density ZKC craton, sepa-
rated by a synformal thrust with the Tuli-Sabi 
and Palala shear zones as its surface traces (de 
Beer and Stettler, 1992). The inferred Limpopo 
belt thickness above the fault is <8 km (de Beer 
and Stettler, 1992).

Although our own field observations corrob-
orate the earlier work showing that the Tuli-Sabi 
(Fig. 3C) and Palala (Fig. 3D) shear zones are 
right- and left-slip features, respectively, in their 
current orientations (McCourt and Vearncombe, 
1987), contradictory right-slip shear bands in the 
overall left-slip Palala shear zone were report-
ed locally by Schaller et al. (1999). The minor 
right-slip indicators, used as the supporting evi-
dence for a right-slip transpressional model of 
the Limpopo belt (Kramers et al., 2011), could 
have resulted from postshear folding or develop-
ment of antithetic structures (Figs. 3E and 3F).

TECTONIC MODEL
Unfolding the currently oriented east-

northeast–trending Limpopo belt and the steep 
bounding Tuli-Sabi and Palala shear zones 
requires the Limpopo belt to have formed by 
west-southwest–directed thrusting, placing the 
Limpopo belt over the ZKC (Figs. 3E and 3F). 
Because the Limpopo rocks are dominated by 
supracrustal assemblages in the hanging wall 
that do not match the granitic-greenstone rocks 
of the ZKC and the marginal zones in the foot-
wall (Kröner et al., 2018; van Reenen et al., 
2019), the total motion on the Limpopo thrust 
must have exceeded 600 km (Fig. 1). This in-
terpretation raises the question of whether the 
Limpopo belt was part of the ZKC or a separate 
craton. For the Limpopo belt to be a separate 
continent, its collision with the ZKC would re-
quire the presence of a magmatic arc immedi-
ately predating the ca. 2.0 Ga Limpopo thrust. 
The absence of such an arc in either the Lim-
popo belt or the ZKC and marginal zones rules 
out this possibility. In contrast, the presence of 
the diagnostic 2.7–2.6 Ga felsic plutons and the 
records of coeval granulite metamorphism in the 
hanging-wall Limpopo belt and footwall mar-
ginal zones (Kröner et al., 2018; van Reenen 

Figure 1. Tectonic map of 
southern Africa, modified 
from Hanson (2003) and 
McCourt et al. (2013).
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Figure 2. Tectonic map of 
the Limpopo belt, south-
ern Africa, compiled from 
Dorland et  al. (2006), 
Kramers et al. (2011), and 
van Reenen et al. (2019): 
mf-1—ca. 2.58 Ga Great 
Dyke; Ar_KV, Ar_ZB, and 
Ar_gb—Archean granitic 
gneiss; gn_lp, gn_nm, 
and gn_sm—metamor-
phic rocks of the Limpopo 
belt and northern and 
southern marginal zones; 
gr—2.70–2.61 Ga gra-
nitic plutons; Ptb, Ptw, 
and Pts—Paleoprotero-
zoic Blouberg Formation 
(1.97–1.88 Ga), Waterberg 
Group (2.02–1.88 Ga), and 

Soutpansberg Group (1.83–1.6 Ga), respectively; mf_2—ca. 2.0 Ga Bushveld igneous complex; 
C-Jr—Carboniferous–Jurassic strata; KC—Kaapvaal craton; ZC—Zimbabwe craton; NMZ and 
SMZ—northern and southern marginal zones of Limpopo metamorphic complex, respectively.
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et al., 2019) favor an intracontinental origin for 
the Limpopo thrust.

We note that the duration (∼40 m.y.), slip 
magnitude (>600 km), slip rate (>15 mm/yr), 
tectonic setting (intracontinental), and wide-
spread anatexis are all similar to those of the Ce-

nozoic Himalayan orogen (e.g., Yin, 2006). This 
comparison inspires a Himalayan-style model 
for the development of the Limpopo belt. Dur-
ing the initial stage (ca. 2.2–2.1 Ga; Fig. 4A), 
the oceanic domain of the ZKC plate was sub-
ducting eastward (present coordinates) below an 

outboard craton (OC), along which a magmatic 
arc was constructed. The OC could have been 
the Congo craton, which exposes a 2.24–2.00 Ga 
plutonic belt (Fig. 1; McCourt et al., 2013). The 
ZKC-OC collision closed the intervening ocean 
and initiated the Limpopo thrust as a new con-
vergence boundary within the ZKC (Fig. 4B). 
Subsequent rifting, expressed by Paleoprotero-
zoic Blouberg and lower Waterberg deposition, 
may have been associated with rifting along the 
ZKC-OC suture (Bumby et al., 2001), leading to 
OC departure together with the pre-Limpopo arc 
from the ZKC. The start of this extensional event 
marked the end of the collision-induced Limpo-
po thrusting (Fig. 4C). Post-Limpopo collision 
along the Magondi belt at ca. 1.98 Ga (Fig. 1; 
Hanson, 2003) reactivated the 2.7–2.6 Ga mag-
matic belt, which was expressed by crustal-scale 
folding of the older Limpopo belt (Fig. 4D). Re-
newed extension across the folded Limpopo belt 
and its neighboring regions resulted in Paleopro-
terozoic upper Waterberg Group deposition at 
ca. 1.93–1.88 Ga (Fig. 4E; Dorland et al., 2006).

DISCUSSION AND CONCLUSIONS
Our Himalayan-style model requires the 

Limpopo thrust to have acted as an intracon-
tinental plate-convergence boundary. Because 
intracontinental plate boundaries (e.g., the Hi-
malayan thrust, the Dead Sea fault, and the San 
Andreas fault) and large-scale crustal motion 
with magnitudes greater than the thickness of 
the lithosphere are key expressions of modern 
plate tectonics (e.g., Cawood et al., 2018), the 
development of the Limpopo belt requires the 
operation of modern plate-tectonic processes, 
expressed as relative motion of rigid lithospheric 
blocks at ca. 2.0 Ga on Earth.

Our Himalayan-style model explains the 
location and timing of the observed inverted 
granulite- to amphibolite-facies metamorphism 
across the Limpopo marginal zones. In the Hi-
malaya, the apparent inverted metamorphism 
was created by (1) footwall folding and/or 
simple shear of preexisting isograds (Fig. 3G; 
e.g., Hubbard, 1996), and (2) footwall accretion 
through downward incremental jumps of active 
slip planes (Fig. 3H; Harrison et al., 1998). The 
first process predicts prethrusting metamor-
phism (Fig. 3G), whereas the second requires 
synthrusting metamorphism. Here, we suggest 
that the inverted metamorphism in the southern 
marginal zone was induced by footwall over-
turned folding of the earlier 2.7–2.6 Ga isograds 
during the 2.0 Ga Limpopo thrusting (Fig. 3G). 
In contrast, the inverted metamorphism in the 
northern marginal zone may have resulted from 
the 2.0 Ga Limpopo thrusting via footwall accre-
tion (Fig. 3H). We also interpret the widespread 
ca. 2.0 Ga Rb-Sr biotite and feldspar cooling 
ages across the northern and southern marginal 
zones and the Limpopo belt itself (van Bree-
men and Dodson, 1972; Kramers and Mouri, 

A B

C D

E F

G

H

Figure 3. (A) Folded Blouberg Formation below the flat-lying Waterberg Group (southern 
Africa), with geology from Bumby et al. (2001) and age constraints from Schaller et al. (1999; 
ca. 1.97 Ga cooling age), Corcoran et al. (2013; ca. 2.04 Ga minimum detrital zircon [DZ] age), 
and Hanson et al. (2004; ca. 1.88 Ga mafic dike age). Note highly flattened boulder-size clasts 
in the tilted beds due to intense shortening. Map symbols: gn—Limpopo metamorphic rocks; 
Pt_b—Paleoproterozoic Blouberg Formation; Pt_m1 and Pt_m2—lower and upper, respectively, 
Mogalakwena Formation of the Waterberg Group. (B) Field picture of the folded Blouberg 
Formation (Pt_b) below Waterberg strata (Pt_m2) at 23°09′26.1″S, 29°42′05.6″E. See Figure 2 
for general location. Rock hammer for scale is ∼70 cm long. (C) Field picture of the Tuli-Sabi 
shear zone at 21°37′18.8″S, 28°10′49.8″E. See Figure 2 for general location. (D) Field picture 
of the Palala shear zone at 23°25′00.5″S, 28°12′47.6″E. See Figure 2 for general location. (E) 
Restored subhorizontal Limpopo thrust zone with synthetic and antithetic shear bands. (F) 
Folded shear zone displaying opposite senses of shear at local and regional scales. (G) Inverted 
metamorphism due to footwall folding. (H) Inverted metamorphism due to footwall accretion.
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2011) to be the results of footwall refrigeration 
and hanging-wall erosion during the Limpopo 
thrusting. This interpretation is consistent with 
the preservation of older 2.7–2.6 Ga Rb-Sr bio-
tite ages obtained from the ZKC rocks located 
outside the marginal zones farther away from the 
Limpopo belt (van Breemen and Dodson, 1972).

Although the exposure of the folded Blou-
berg and lower Waterberg strata is much smaller 
than the overall Limpopo belt (Fig. 2), the post-
orogenic folding effect was not considered in 
any of the earlier tectonic models. Our hypoth-
esis is testable in that it predicts a faster and 
earlier onset of cooling in the core of the orogen 
during folding, the presence of fold structures of 
the same age and same trend north and south of 
the Limpopo belt, and a single larger Archean 
craton (ZKC) in southern Africa.
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